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a b s t r a c t

In performance-optimized artificial neural networks, such as convolutional networks, each neuronmakes
excitatory connections with some of its targets and inhibitory connections with others. In contrast,
physiological neurons are typically either excitatory or inhibitory, not both. This is a puzzle, because it
seems to constrain computation, and because there are several counter-examples that suggest that it may
not be a physiological necessity. Parisien et al. (2008) showed that anymixture of excitatory and inhibitory
functional connections could be realized by a purely excitatory projection in parallel with a two-synapse
projection through an inhibitory population. They showed that this works well with ratios of excitatory
and inhibitory neurons that are realistic for the neocortex, suggesting that perhaps the cortex efficiently
works around this apparent computational constraint. Extending this work, we show here that mixed
excitatory and inhibitory functional connections can also be realized in networks that are dominated by
inhibition, such as those of the basal ganglia. Further, we show that the function-approximation capacity
of such connections is comparable to that of idealized mixed-weight connections. We also study whether
such connections are viable in recurrent networks, and find that such recurrent networks can flexibly
exhibit a wide range of dynamics. These results offer a new perspective on computation in the basal
ganglia, and also perhaps on inhibitory networks within the cortex.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In performance-optimized artificial neural networks, such
as convolutional networks, individual neurons generally make
excitatory connections with some of their targets and inhibitory
connections with others. It would make little sense to constrain
each neuron a priori to be either excitatory or inhibitory, as this
would restrict the functions that could be approximated in each
layer by a factor of 2n.

But, strangely, the brain does so. There is a clear division be-
tween excitatory and inhibitory neurons. This is related to ‘‘Dale’s
Principle’’ (Eccles, 1976), which states that neurons typically re-
lease the same transmitters at all branches of their axons. There
are exceptions, including excitatory/inhibitory cotransmission in
the retina (Yoshida et al., 2001) and possibly in the mammalian
uterus (Burnstock, 2004); the capacity for GABA to depolarize a
cell, depending on resting membrane potential and internal Cl−
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concentration (Chavas & Marty, 2003; Wagner, Castel, Gainer, &
Yarom, 1997); and receptor-dependent mixed effects of gluta-
mate (Katayama, Akaike, & Nabekura, 2003). Some synapses can
also switch rapidly between excitatory and inhibitory transmis-
sion (Yang, Slonimsky, & Birren, 2002). Nonetheless, most neurons
are exclusively excitatory or inhibitory most of the time, appar-
ently constraining the computational power of physiological neu-
ral networks.

However, it has been shown (Parisien, Anderson, & Eliasmith,
2008) that any idealized projection model (in which each neuron
may excite some targets and inhibit others) can be transformed
into a more physiologically-realistic projection that is functionally
nearly equivalent, solving what they call the ‘‘negative weights
problem’’. This transformed projection is consistent with typical
cortical anatomy (see e.g. Somogyi, Gamaás, Lujan, & Buhl, 1998),
in that (1) the primary projection neurons are excitatory, (2)
these neurons synapse onto both excitatory neurons and inhibitory
interneurons in the target area, (3) the inhibitory interneurons in
turn synapse onto local excitatory neurons, (4) there is substantial
convergence and divergence in the synapses between each group
of neurons, and (5) about 20% of the neurons are inhibitory.

Interestingly, many projections outside the cortex have es-
sentially the same form. For example, this is true of descending
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projections onto thalamic nuclei (Jones, 1985). Projections from
cortex onto the striatum (the main input nucleus of the basal gan-
glia) are also similar, in that excitatory projection neurons synapse
onto the striatal projection neurons, and also onto fast-spiking in-
terneurons that inhibit the projection neurons (Plenz, 2003).

The main counterexample in mammals is the networks within
the basal ganglia. Most projection neurons in the basal ganglia
(apart from those of the sub thalamic nucleus and substantia nigra
pars compacta) are inhibitory. This suggests that computation in
the basal ganglia may be very different from that in the cortex.
For example, while function approximation is a useful analogy for
understanding cortical processes such as visual feature extraction,
coordinate transforms, and even processing of complex sentence-
like concepts (Eliasmith, 2013), the preponderance of inhibition
in the basal ganglia suggests that function approximation may
not be a useful abstraction for understanding basal ganglia
function.

Accordingly, many models of the basal ganglia consist of
inhibition-like computations such as subtraction and competition.
For example, the classic Albin/DeLong model describes basal gan-
glia function in terms of a balance between inhibitory and disin-
hibitory paths to the output nuclei (Albin, Young, & Penney, 1989;
DeLong, 1990), and more elaborate extensions of this model (Gur-
ney, Prescott, & Redgrave, 2001; Stewart, Bekolay, & Eliasmith,
2012) also treat computation in terms of inhibition and disinhi-
bition of represented information. One notable counterexample is
the dimension reduction model of Bar-Gad, Morris, and Bergman
(2003), an abstract model that assumes mixed excitatory and in-
hibitory weights.

We wondered to what extent the range of computations in
these models, i.e. largely subtraction and competition, is dictated
by the dominance of inhibition. To explore this question, we
extended the approach of Parisien et al. (2008) to networks that
consist only of inhibitory neurons. The resulting models suggest
that if the postsynaptic neurons are inhibitory, tonically active,
and have local collaterals, then such networks can indeed perform
function approximationmuch like networkswithmixed excitatory
and inhibitory synaptic weights. These conditions are met through
most of the basal ganglia. The large projection from globus pallidus
externus to the subthalamic nucleus is an exception (the target
neurons are excitatory), but the same computations might be
possible in this case due to collaterals in the globus pallidus.

Our results here cast little doubt on existing basal ganglia
models, which are supported by a variety of evidence. However,
ongoing refinement of basal ganglia models is likely, for example
to match physiology in increasing detail (e.g. Humphries, Stewart,
& Gurney, 2006;Wei, Rubin, &Wang, 2015), and these results may
help to expose subtle mechanisms that have been less obvious
before.

To reach this conclusion, we briefly review the Parisien
et al. (2008) analysis for transforming mixed-weight feedforward
circuits into biologically plausible circuits. We then extend this
approach to feedforward inhibitory circuits in Section 4. We
then explore the range of functions that can be approximated
by a single projection from a presynaptic to a postsynaptic
population in an inhibitory network (Section 5). We then turn to
the more challenging problem of constructing recurrent circuits,
in which we consider possible modes of instability that may
be introduced by the transform (Section 6). Here we show
that the inhibitory transform is stable when driving recurrent
network dynamics with a wide range of time constants. We
conclude by discussing consequences of the existence of this
‘‘inhibitory Parisien transform’’ for our understanding of the basal
ganglia.
2. Methods

2.1. Neural Engineering Framework

Network models were constructed using the Neural Engineer-
ing Framework (NEF), which was detailed by Eliasmith and An-
derson (2003). We briefly review the most relevant aspects of this
approach below.We also note that while it is convenient to use the
NEF, the Parisien transformapplies to any network inwhich groups
of neurons are driven by common inputs (Parisien et al., 2008).

In the NEF, populations of neurons are taken to be cosine-tuned
to vector variables, and driven by a current

Ij = αeTj x + Ibiasj , (1)

where ej is the jth neuron’s encoding vector (or preferred direction
vector), x is a vector that is represented by the population activity,
and Ibiasj is a constant intrinsic bias current. Variations in the
bias current across a population contribute to heterogeneity of
responses to input. We say that x is represented by population
activity in the sense that both contain the same information. In
particular, the neurons’ activity can be expressed as a function of
x, and x can be estimated from population activity. (For example,
in a model of the primate middle temporal area, xmight consist of
visual velocities, stereoscopic disparities, etc.)

Populations are usually taken to have a dimensionless operating
range of ∥x∥2 < 1. In this study we focus on representation of one-
dimensional variables. In this case scalar e are typically drawn at
random from {−1, 1}. In higher dimensions, vector e are usually
drawn from the surface of a hypersphere.

Various functions f(x) can be approximately decoded as linear
combinations of the output of each neuron. Specifically,

f̂(x) =


i

diai(x), (2)

where f̂(x) is an approximation of f(x), di is the ith neuron’s
decoding vector, and ai is the ith neuron’s filtered spike train.
The filter is a first-order low-pass filter that models post-synaptic
current dynamics. In a simulation, neuron output is modelled
as a sequence of impulse functions that correspond to spikes.
Filtering these sequences with a model of post-synaptic current
dynamics yields an online approximation of the spike rate. This
means that function approximations that correspond to linear
combinations of tuning curves canbe readoutwhile thepopulation
spikes, although they are somewhat corrupted by spike-related
fluctuations.

A presynaptic population a can be connected to a postsynaptic
population b, so that population b becomes tuned to a function
that is approximated from population a’s activity. That is, we can
connect the populations so that xb = f̂(xa), where xa is the
vector encoded by the presynaptic population and xb is the vector
encoded by the postsynaptic population. This implies that the
current flowing into the post-synaptic neurons is

Ij = αeTj xb + Ibiasj = αeTj f̂(xa) + Ibiasj

= αeTj


i

diai(xa) + Ibiasj . (3)

Note that the expression on the right is in terms of the
presynaptic activities ai. This dependence canbe rewritten in terms
of synaptic weights wji that connect individual presynaptic and
postsynaptic neurons, as

Ij = α


i

wjiai(xa) + b, (4)

where

wji = eTj di. (5)
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In idealized mixed-weight projections, the decoders are reg-
ularized optimal linear decoders (Salinas & Abbott, 1994), which
minimize the squared approximation error,

x


i

diai(x) − f(x)

2

dx + λ


i

∥d∥
2
2, (6)

where λ is a regularization parameter that penalizes large
decoders. This optimization leads to a mixture of excitatory and
inhibitory synaptic weights (according to Eq. (5)), because a given
neuron may synapse onto other neurons with encoders that are
either parallel to its decoder, antiparallel, or anything in between.

The transformed projections in both this study and in Parisien
et al. (2008) involve inhibitory synapses from interneurons
onto postsynaptic neurons. As described below (Section 3), the
associated encoders are all negative, so the synapses are made
inhibitory by constraining the decoders to be positive. We used
Matlab’s lsqlin function for constrained optimization of these
decoders.

Post-synaptic currents following a spike are modelled with
single-time-constant exponential dynamics with time constant
τ psc . Network dynamics of the form

ẋ = Ax + Bu (7)

can be approximated by connecting a population that represents u
to a population that represents x, and recurrently connecting the
x population to itself, with appropriate function approximation in
each connection. Specifically, the feedforward projection should
approximate the function

B′u = τ pscBu, (8)

and the recurrent projection should approximate

A′x = τ pscAx + x (9)

(Eliasmith & Anderson, 2003). Nonlinear network dynamics can
also be obtained through nonlinear feedback functions (Eliasmith,
2005).

2.2. Point-Neuron model

Numerical simulations were performed with leaky-integrate-
and-fire (LIF) neurons (Knight, 1972). In the subthreshold regime
of this model,

τmv̇ = −v + αeTx + Ibias, (10)

where τm is the membrane time constant, v is the membrane
potential, v̇ is its derivative, α is a scaling factor, e is the neuron’s
preferred direction, x is the vector of variables towhich the neuron
is tuned, and Ibias is a constant bias. v is normalized to between 0
and 1. When v crosses a spike threshold of 1, a spike occurs, v is
reset to 0, and subthreshold integration is paused for a post-spike
refractory time τref .

2.3. Population parameters

To ensure that our main results were not dependent on a spe-
cific set of neuronmodel parameters, we repeated key simulations
with multiple random populations, with parameters drawn from
six different distributions. These parameter distributions are de-
scribed in Tables 1 and 2. The parameters included τm (the mem-
brane time constant), τref (spike refractory time), α (input gain),
and constant bias current Ibias (see Eq. (10)).

Each neuron’s bias Ibias was derived from another parameter,
which we call the ‘‘intercept’’. This is the value of ∥x∥2 at which
a neuron transitions from zero to non-zero spike rate, when x
Table 1
Parameters of population distributions with gaussian-distributed intercepts. The
parameters are absolute spike refractory time (τref ); membrane time constant (τm);
standard deviation of gaussian intercept distribution (σ ); and shape (k) and scale
(θ ) of the gamma distribution of the scale factor α.

τref τm σ k θ

1 .005 .04 2/3 2 2
2 .003 .03 1.5 3 .2
3 .004 .01 1 3 .2

Table 2
Parameters of population distributions with uniformly-distributed intercepts. The
parameters are absolute spike refractory time (τref ); membrane time constant (τm);
minimumandmaximum intercepts (Tmin and Tmax , respectively); andminimumand
maximum spike rates at x = e (Rmin and Rmax , respectively). Note that this is the
value of xwithin the population’s nominal operating range (i.e. ∥x∥2 < 1) at which
the neuron’s rate is highest.

τref τm Tmin Tmax Rmin Rmax

4 .002 .02 −1 1 200 400
5 .005 .02 −1 1 30 80
6 .002 .1 −.95 .95 50 100

is parallel to the neuron’s preferred direction. In one group of
distributions (Table 1), the intercepts were gaussian-distributed
with mean zero and standard deviation σ . In this case, the scale
factor α was chosen first, from a gamma distribution with shape k
and scale θ , and Ibias was then set to produce the chosen intercept.
In the second group of distributions (Table 2), intercepts were
uniformly distributed between Tmin and Tmax, and spike rates at
eTx = 1 were uniformly distributed between Rmin and Rmax.

The fourth distribution (see Table 2) is the default in the Nengo
NEF simulator (Bekolay et al., 2014; Stewart, Tripp, & Eliasmith,
2009). This simulator was used to develop Spaun (Eliasmith et al.,
2012) and many other models.

3. Feedforward excitatory projections

In this section we review the methods for transformation of
a mixed-weight projection model to a model with excitatory
projection neurons, which is more realistic for the cortex. The
material in this section was introduced by Parisien et al. (2008),
elaborating on suggestions by Eliasmith and Anderson (2003).

Beginning with an idealized projection, in which each pre-
synaptic neuron canmake both excitatory and inhibitory synapses,
Parisien et al. (2008) define a transform to a realistic model
in which each neuron is either excitatory or inhibitory. The
transform consists of two steps. The first is to offset all of
the original (mixed-sign) synaptic weights so that they become
excitatory. This eliminates the mixed weights, but introduces
extraneous excitatory current into the post-synaptic neurons. The
second step is to cancel out this extraneous excitatory current by
introducing inhibitory neurons. This could be done by introducing
one inhibitory interneuron for each (now-excitatory) projection
neuron (e.g. Churchland, 1996). However, this would require as
many inhibitory as excitatory neurons. In the method of Parisien
et al., the inhibitory neurons instead encode all of the necessary
bias as a population. The size of the inhibitory population is set
to 1/4 the size of the projection population, reflecting the ratio of
excitatory to inhibitory neurons in the neocortex. This transform is
illustrated in Fig. 1.

We now describe the transform in more detail. We begin with
a connection from a presynaptic population a to a postsynaptic
population b, in which a function is approximated so that
xb = fo(xa). Here the ‘‘o’’ superscript stands for ‘‘original’’ (pre-
transform). The ‘‘original’’ synaptic weight between the ith pre-
synaptic neuron and the jth post-synaptic neuron is wo

ji. Each of
these weights can be either positive or negative.
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Fig. 1. The excitatory Parisien transform. A, An idealized projection in which each pre-synaptic neuron can act as a source of both excitation and inhibition is mapped
to a physiologically realistic projection that performs the same computation. In the transformed projection, excitatory pre-synaptic neurons synapse both directly onto
post-synaptic targets, and also indirectly through a small population of inhibitory interneurons. B, Shifting the synaptic weights in the main projection (so that they are
all excitatory) introduces an excitatory bias current into the post-synaptic neurons. This bias current is a function of the variable x that is represented by the pre-synaptic
population. This same bias function is projected to the interneurons, which in turn offset the excitatory current by inducing an approximately-equal inhibitory current into
the post-synaptic neurons.
Source: Reproduced with permission from Tripp (2008).
The first step is to add a positive bias wb
ji to each weight, so that

transformed weights,

wji = wo
ji + wb

ji,

are all excitatory. The only trick in defining the bias weight is
that it must allow compensation by a correlated ensemble of
interneurons. This correlation is what decouples the number of
interneurons from the number of projection neurons.

Analogous to the NEF approach to defining synaptic weights
(i.e. as products of encoders and decoders), Parisien et al. define
the bias weight in terms of bias encoders and decoders, as

wb
ji = ebj d

b
i ,

where ebj is the bias encoder of the jth post-synaptic neuron, and
dbi is the bias decoder of the ith pre-synaptic neuron.

These bias decoders dbi can be viewed as decoding a ‘‘bias func-
tion’’ f b(x) =


i d

b
i ai(x) from the pre-synaptic neurons. The out-

come is not highly sensitive to either the shape of the bias function
or the values of the bias decoders, except that large differences be-
tween the magnitudes of different bias decoders are problematic.
So these decoders are chosen to be uniform, i.e. dbi = db. With uni-
form db the form of this bias function is determined by the pre-
synaptic neurons’ tuning curves. For example, for cosine-tuned LIF
neuronswith a uniformdistribution of intercepts, the bias function
resembles a parabola that is lowest in the centre and highest at the
extremes of the represented range (Fig. 1B). Typically, the uniform
db are scaled so that this bias function has a maximum of one.

Given this definition of the bias decoder db, the bias encoder ebj
of the jth post-synaptic neuron is chosen to be as small as possible,
such that wij ≥ 0 for all i. This achieved when

ebj = maxi


−wo

ji

db


.

To reiterate, the process to this point makes all the weights
positive, i.e.

wji = wo
ji + wb

ji = wo
ji + ebj d

b
i ≥ 0. (11)

However, this change in the synaptic weights also changes
whatever function f o(xa) had been approximated by the original
synaptic weights wo

ji. Specifically, it adds the bias function f b(xa),
so that the connection now approximates the function f (xa) =

f o(xa) + f b(xa). The next step is to introduce a population of
inhibitory interneurons to cancel out the bias function, and thus
recover the transform f o(xa) associated with the original mixed-
sign weights wo

ji.
To achieve this, we first add a connection that projects the bias
function f b(xa) from the presynaptic neurons to the interneurons.
The interneurons have uniform encoders ek = 1. Their decoders
optimally approximate −f b(xa), within the constraint that these
decoders must all be negative. The interneurons then project the
decoded output − ˆf b(xa) to the post-synaptic neurons, which scale
it with the bias encoders ebj . Each post-synaptic neuron therefore
receives the following map of the pre-synaptic represented
variable:

f (xa) = f o(xa) + ebj f
b(xa) − ebj ˆf b(xa) ≈ f o(xa).

In other words, the shift in the synaptic weights of the main
projection adds excitatory bias current, and the interneurons add
approximately equal inhibitory current, so that the elaborated
projection model has effectively the same synaptic weights as the
original idealized projection.

As discussed in the introduction, the general structure of the
resulting projection (e.g. excitatory neurons projecting onto both
excitatory neurons and a smaller number of locally-connected
inhibitory neurons, etc.) is very common.

4. Feedforward inhibitory projections

This section shows that the method described above extends to
inhibitory projection neurons. This case is less common generally,
but it dominates the basal ganglia—projection neurons of the
striatum, globus pallidus, and substantia nigra pars reticulata
are all inhibitory. Purkinje cells, the projection neurons of the
cerebellar cortex, are also inhibitory.

To transform an idealized mixed-sign projection into an
inhibitory one, a negative bias is added to each of the original
synaptic weights. In this case the bias decoders are uniform
and negative, and we say that they decode the negative of the
bias function f b(xa). The equation for the bias encoders actually
remains the same, despite the fact that the largest-amplitude
positive weight must be corrected in this case (rather than the
largest-amplitude negative weight as before), because the bias
decoders are negative. So again,

ebj = maxi


−wo

ji

db


.

The bias weight wb
ji in this case introduces excessive inhibitory

currents into the post-synaptic neurons. As before, the bias func-
tion is also projected to tonically-active inhibitory interneurons,
which firemore slowly given the bias, and inhibit the post-synaptic
neurons less. This input balances the increase in direct inhibition
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Fig. 2. Interneuron tuning in the excitatory and inhibitory transforms. The shaded area indicates the normal operating range, and the lines show tuning curves of example
neurons from interneuron ensembles. A, In the excitatory transform, the excitatory pre-synaptic neurons increase interneuron firing from low intrinsic rates (i.e. at f b = 0).
B, In the inhibitory transform, the inhibitory pre-synaptic neurons reduce firing activity from high intrinsic rates.
Source: Reproduced with permission from Tripp (2008).
from the pre-synaptic neurons. The tonic activity of the interneu-
rons is critical, because reduction in this activity is needed to dis-
inhibit the post-synaptic neurons (see Fig. 2).

In addition, the post-synaptic neurons must also be tonically
active. Specifically, tonic input from the inhibitory interneurons
must be offset either by intrinsic currents or separate excitation,
in order to allow the inhibition by both the pre-synaptic neurons
and interneurons to result in changes in neural activity. Ourmodels
assume intrinsic currents, which we model in terms of a common
factor b that is shared across the postsynaptic population, such
that the intrinsic current of the jth postsynaptic neuron is ebj b.
The output of the interneuron population approximates −(xint +

b). (Thus, for example, if the bias xint = −f b(xa) were zero,
the interneuron output would cancel the intrinsic pacemaking
currents of the postsynaptic neurons.)

Fig. 3 compares an idealized mixed-sign circuit with its
transformation into both excitatory and inhibitory circuits as
per the two transforms described above. In this example, the
projection calculates a nonlinear and non-monotonic function
of the pre-synaptically represented variable xa, illustrating that
this type of computational flexibility is retained in both the
excitatory and inhibitory cases. The plotted value is an estimate
of xb (the value represented by the postsynaptic population) from
the postsynaptic population’s spikes. This estimate is based on
unconstrained optimal linear decoders of postsynaptic population
activity, which were found independently from the synaptic
weights between the presynaptic and postsynaptic population.
(Note that these postsynaptic decoding weights have mixed signs,
and do not correspond to realistic synaptic weights; they just
allow us to show that the desired signal is present within the
postsynaptic spikes.)

Parisien et al. demonstrated that the transform works equally
well for vectors and other nonlinear transformations, which we
have confirmed holds for the inhibitory transform (results not
shown).

Building on this example of approximation of a nonlinear, non-
monotonic function (Fig. 3), the next section describes the range
of such functions that can be approximated by the inhibitory
transform.

5. Supported computations

The goal of this section is to characterize the range of functions
that can be computed by Parisien projections, relative to idealized
mixed-weight projections.

In an idealizedmixed-weight projection, with no constraints on
synaptic weights, the space of computable functions can be under-
stood in terms of the principal components of the presynaptic tun-
ing curves, where the tuning curves are spike rates as functions
of xa (equivalently, the time-averaged spike trains T−1


T ai(xa)dt
as T → ∞). On a long enough time scale, a linear combination of
neuron outputs can closely approximate any function in the span of
the tuning curves. However, on behaviourally relevant timescales,
noise due to spike timing dominates the approximation of some of
these functions (Eliasmith & Anderson, 2003).

The functions that can be approximated with a high signal-
to-noise ratio correspond to linear combinations of the first few
principal components of the set of presynaptic tuning curves. This
is because the principal components are ordered by the amount
of variance they explain. As the explained variance decreases,
sensitivity to noise increases because noise is isomorphic along
all components. Thus the signal (explained variance) to noise
ratio goes down, until the noise dominates the component. The
dimension of the computable space therefore corresponds roughly
to the number of singular values that are larger than the noise
power.

The interneurons in a Parisien projection are an additional
source of noise. The Parisien transform might therefore be
expected to further restrict the space of computable functions. This
can be seen qualitatively in Fig. 3, in the larger errors in panels D
and E (transformed projections) than C (idealized projection).

To understand the effects of the excitatory and inhibitory
transforms on function approximation more generally, we explore
how the additional noise they introduce varies with principal
component rank, e.g. whether they add a small constant amount
of noise that becomes irrelevant for smaller principal components,
or whether the noise increases so rapidly with smaller principal
components that it severely restricts function approximation.
Some growth in interneuron-related error might be expected,
because larger synaptic weights are needed to approximate
smaller principal components, and this would require larger bias
signals. Thus the bias encoders must be larger, amplifying noise
from the interneurons.

Fig. 4 shows how RMS error increases when the synaptic
weights approximate principal components (i.e. of presynaptic
tuning curves) of increasing rank. Results for idealized, excitatory,
and inhibitory projections are shown. These results are averages
over five randomly generated populations for each of six sets
of population parameters (see Section 2.3). Errors are lowest for
idealized projections, higher for excitatory projections, and highest
for inhibitory projections. Specifically, the RMS errors of the
excitatory and inhibitory transforms, respectively, were 9.2% and
14.7% higher (on average over the different principal components)
than that of the idealized transform. These differences are more
subtle than differences across principal component rank. For
example, in the idealized projections, error in decoding the fourth
principal component was 141% higher than error in decoding the
second principal component. Simulations with larger populations
(not shown) showed similar trends to those of Fig. 4, butwith lower
noise throughout.
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C

D

E

Fig. 3. Example simulations illustrating that both the excitatory and inhibitory transforms can calculate non-monotonic functions. In each of the left panels, the black
dashed line indicates the ideal value of the represented variable in the postsynaptic population, and the grey line indicates its estimate, decoded from spiking activity in
this population. Each of these simulations was performed with ensembles of 600 pre-synaptic neurons, 600 post-synaptic neurons, and (in the transformed projections)
150 interneurons. A, The pre-synaptic ensemble represents an input variable that increases linearly with time. B, Diagram of the network structure, consisting of a single
projection from a one-dimensional ensemble to another, in which the synaptic weights approximate the map y = sin(x). C, Optimal linear decoding of y from spiking neural
activity in the post-synaptic ensemble, with an idealized mixed-weight projection. The right panel shows a histogram of the synaptic weights in this projection. D, Optimal
linear decoding of y from activity in the post-synaptic ensemble, after the excitatory Parisien transform. The right panel shows the shifted distribution of synaptic weights
in the main projection (all above zero). The inset shows the distribution of synaptic weights in the projection from the inhibitory neurons to the post-synaptic neurons. E,
As (D), but with the inhibitory Parisien transform.
Source: Reproduced with permission from Tripp (2008).
Error also arises from lag in the path through the interneurons
(not shown). These errors are small when xa changes slowly
(as in Fig. 3), and also when a large principal component is
approximated (because the bias encoders are small). However,
they become prominent when xa changes rapidly and smaller
principal components are approximated (e.g. as Fig. 3 but with a
10x faster ramp).

In summary, both the excitatory and inhibitory projections
can perform somewhat restricted computations relative to an
idealized mixed-weight projection, but the restrictions are subtle.
Qualitatively, Parisien projections exhibit gradually increasing
errors when approximating smaller principal components, much
like idealized mixed-weight projections. These results reinforce
the conclusions of Parisien et al., and also suggest that networks of
inhibitory neuronsmayhave a capacity for function approximation
that is comparable to that of excitatory/inhibitory networks.

6. Recurrent projections

In an excitatory Parisien projection (i.e. a combined di-
rect/indirect structure that can be obtained by applying the trans-
form), interneuron currents are slightly lagged in time behind the
direct bias currents, because of the extra synapse in the pathway
through the interneurons. This lag introduces an error, the mag-
nitude of which varies with the first time derivative of the bias
function, df b/dt . In a feedforward network this error tends to be
small, in part because excitatory synapses onto inhibitory neurons
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A B

Fig. 4. A, The first fewprincipal components of diverse responses of an example LIF neuron population. The first, second, and third principal components resemble (relatively)
constant, linear, and parabolic functions, respectively, and later principal components have higher frequencies. B, Root-mean-squared error in the approximation of the
principal components, vs. principal component rank, for idealized, excitatory-Parisien, and inhibitory-Parisien types of projections. For each function, the error is calculated
over a one-second simulation inwhich a presynaptic population is drivenwith a ramping inputwhich goes from−1 to 1, and this population drives a postsynaptic population
with a decoded function of its input that corresponds to one of the principal components of the tuning curves. The error is the difference between the network output (decoded
from the spikes of the postsynaptic neurons) and a filtered version of the input (filtered to match the feedforward synaptic dynamics of the network). The results are an
average over five networks with parameters drawn from each of the six parameter distributions of Section 2.3 (i.e. a total of 30 networks).
tend to have fast dynamics (Carter & Regehr, 2002; Geiger, Lübke,
Roth, Frotscher, & Jonas, 1997;Walker, Lawrence, &McBain, 2002).
However, as Parisien et al. (2008) pointed out, the associated de-
lay raises the possibility of instability in a recurrent network. They
investigated this possibility using an integrator network as an ex-
ample, and did not discover a stability problem. The integrator ex-
ample is a reasonable choice, because by definition it operates on
the border of instability. However, it remains possible that insta-
bility might arise in other types of recurrent networks.

In contrast with the excitatory transform, the interneurons of
the inhibitory transform are of the same type as the post-synaptic
neurons, and (we assume) have the same synaptic dynamics. Thus
lag in the disynaptic branch is double that in the monosynaptic
branch. On the other hand, inhibition arrives first in this case,
suggesting that a relatively larger delay (in disinhibition) may not
threaten stability in the same way.

This section reconsiders the stability issue in light of these
differences. We examine a wider variety of networks than Parisien
et al., and show that a Parisien network can be unstable even if the
corresponding idealized network is stable. We also show that the
stability limits of the excitatory transform are narrowed when the
post-synaptic current time constant of the interneurons is as large
as that of the others, but that this is not the case in the inhibitory
transform.

A brief terminological note: in a recurrent network, the pre-
synaptic and post-synaptic ensembles are the same, and are
referred to below as the primary ensemble (as opposed to the
interneuron ensemble).

6.1. New mode of instability

Instability that arises from the transform can be illustrated
with a recurrent network that approximates the linear dynamical
system,

ẋ = Ax. (12)

This is a special case of the dynamical system, ẋ = Ax + Bu
(Eq. (7)). As discussed in the Methods, such idealized dynamics
can be approximated by a spiking network in which a function
A′x = τAx + x is decoded from an ensemble of neurons and fed
back to the same neurons (Eliasmith & Anderson, 2003), where A′

is the neural feedback matrix of Eq. (9) (a modification of A that
accounts for the synaptic time constant). However, because there is
some error in the spike-decoded approximation x̂ of x (i.e. x̂ ≠ x),
the dynamics of the neural network are more precisely,

τ ẋ = A′x̂(x) − x. (13)
In the following we will assume that these dynamics are stable,
and concentrate on the stability of new dynamics that the Parisien
transform introduces.

In the transformed circuit, bias in the direct feedback projection
is ideally cancelled out by feedback through the interneurons.
However, the bias and interneuron feedback may be imbalanced
due to imperfect decoding from the interneuron ensemble
(i.e. interneuron output x̂int(xint) ≈ f b(xa)), and also due to the
additional lag in the path through the interneurons when the
represented value is changing. This (usually small) difference,

∆di
= ±f b(xa) − x̂int , (14)

between direct and indirect bias (where the sign is +ve for the
excitatory transform and −ve for the inhibitory transform) is the
key to understanding how the network can become unstable. Both
the direct and indirect bias affect the primary neurons through
synapses. So the effect of this difference on the primary neurons at
any given instant in time can be modelled as D(t) = h(t) ∗ ∆di(t),
where h(t) is the impulse response function of the post-synaptic
current dynamics, and ∗ denotes convolution. In other words, the
spiking of the primary neurons depends in part on the difference
between the direct and indirect bias, filtered by the post-synaptic
current dynamics.

Recall that the bias encoders ebj all have the same sign, so
the firing rates of all neurons in the primary ensemble rise and
fall together with changing D. As described in Section 3, the
bias function f b(x) is a sum of the activities of neurons in the
primary ensemble (which are themselves a function of x). Since
these neurons are also affected by D, the bias is more accurately
described as a function of both x and D. Consequently, D can be
viewed as a state variable that forms part of an additional feedback
loop through the network, as illustrated in Fig. A.6. Accounting for
this new state variable D, the excitatory system has the following
dynamics:

τ ẋ = A′x̂(x,D) − x, (15)

τ Ḋ = f b(x,D) − x̂int(xint) − D, (16)

τint ẋint = f b(x,D) − xint , (17)

where xint is the variable represented by the interneuron ensemble,
x̂int(xint) is the decoded estimate of xint from interneuron activity,
and similarly x̂(x,D) is the decoded estimate of x from primary
ensemble activity. Similarly, the inhibitory system has the
dynamics,

τ ẋ = A′x̂(x,D) − x, (18)
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τ Ḋ = −f b(x,D) − (xint + b)(xint) − D + b, (19)

τint ẋint = −f b(x,D) − xint , (20)

where b is a bias that models intrinsic pacemaking currents, and
the output of the interneurons approximates the function−(xint +
b) (see Section 4).

Linearization of Eqs. (15)–(17) (see Appendix) suggests that
the excitatory transform can become unstable when the idealized
dynamics have large negative eigenvalues, and that the stability
limits narrow if τint approaches τ . In contrast, linearization of
the inhibitory transform (Eqs. (18)–(20)) suggests that it does not
become unstable with large negative eigenvalues.

Fig. 5 shows simulation results that confirm the analytical re-
sults. In these simulations, recurrent networks were parameter-
ized to act as low-pass filters that acted on the represented variable
xwith various time constants. We refer to these time constants as
‘‘network time constants’’ to distinguish them from synaptic time
constants. In these networks x was one-dimensional, and the net-
work time constant was simply the inverse of A (similarly, if x
is multi-dimensional, the network time constants are the inverse
eigenvalues of A).

The time constant of post-synaptic currents in the primary
neurons was 10 ms. The time constant of the recurrent network
dynamics depended on both the synaptic time constant and on
feedback. In particular, the network time constantwas greater than
10 ms when the feedback was positive (thus slowing the decay of
x), and less than 10 ms when it was negative (hastening the decay
of x).

The plots show fractions of networks (drawn from various
parameter distributions) that were stable with various network
time constants. All networks with time constants around 10 ms
were stable, because 10 ms corresponds to zero feedback. The
idealized (non-Parisien) networks (symbol x) were stable through
the full range of time constants.

Consistent with Parisien et al. (2008), the excitatory Parisien
networkswere stable in networkswith long time constants (which
are similar to integrators). However, they were unstable with
strong negative feedback associated with very short network time
constants (consistent with our linearization analysis). We also
simulated excitatory networks in which the time constants of
synapses onto interneurons (which are normally fast) were the
same as the other synaptic time constants. Consistent with our
analysis, these networks had narrower stability margins. They
became unstable with somewhat weaker negative feedback than
the standard excitatory Parisien networks, and they were also
unstable with strong positive feedback.

In contrast, the inhibitory Parisien networks were stable
throughout the tested range of network time constants, with both
positive and negative feedback. This is also consistent with the
linearization results (see Appendix).

7. Discussion

The main implication of this study is that inhibitory networks
can, in principle, support diverse computations including approxi-
mation of a variety of non-monotonic functions. In fact, ourmodels
suggest that the versatility of inhibitory networks is similar to that
of excitatory–inhibitory networks, which in turn is comparable to
that of the idealizedmixed-sign projections of artificial neural net-
works.

We also found that inhibitory networks could exhibit a wider
range of dynamics than excitatory–inhibitory networks, without
becoming unstable. This included very fast dynamics that arose
form strong negative feedback. This suggests that one potential
benefit of an all-inhibitory network is versatility as a dynamical
system.
Fig. 5. Simulations of recurrent networks with the inhibitory transform.
Simulations were performed with five networks with random properties drawn
from each of the six parameter distributions (Section 2.3), for a total of 30
networks. Each networkwas repeatedly simulatedwith different feedback, in order
to vary the network time constant from 0.0005 s to 5 s. The plots show the
fraction of networks that were stable, as a function of network time constant. The
populations were driven by external step input which was 0 for 0.2 s, stepping
to 1 for a further 0.3 s. A network was considered stable if x̂ was similar to the
output of a perfect low-pass filter with the same time constant as the network
(specifically, the mean output over 20 ms periods immediately before the step
and immediately before the end of simulation had to match the filter within 0.15)
and x̂int was less than 1.5. Both the mixed-weight networks and the inhibitory
Parisien networks were stable throughout the range of network time constants.
The excitatory Parisien networks were unstable with strong negative feedback.
Modified excitatory Parisien networkswith uniform synaptic time constants (rather
than the usually faster synapses onto interneurons) were unstable with relatively
weaker negative feedback, and also with positive feedback.

7.1. Interaction between function approximation and dynamics

The interneurons introduce lag in one of the signal paths
from presynaptic to postsynaptic neurons. Related to the present
stability results, we previously found that interneuron lag in the
excitatory transform had little effect on network dynamics, in
a variety of networks designed to act as differentiators, with
inputs over a wide range of frequencies (Tripp & Eliasmith,
2010, particularly figure 6).

However, asmentioned in Section 5, the effect of this lag ismore
pronounced when the approximated function is nonlinear. This is
because nonlinear functions require larger decoders,which require
larger bias encoders, and these amplify the lagged signal more
strongly. Thus in general the error introduced by the transform
depends on both the decoded function (larger for more strongly
nonlinear functions, as shown in Fig. 4) and the frequency content
of x.

7.2. Relevance to the basal ganglia

The inhibitory transform makes two key assumptions about
circuit properties. The first (shared with the original transform
of Parisien et al.) is that target neurons are locally connected
through an inhibitory network. This assumption is satisfied by both
cortical and basal ganglia networks. In addition, for the inhibitory
transform, it is essential that many target and interneurons be
tonically active. This is necessary so that inhibition modulates
the activity of these populations. Significantly, the basal ganglia
are rife with tonically active neurons (Surmeier, Mercer, & Chan,
2005), including the principal neurons of the globus pallidus,
subthalamic nucleus, and substantia nigra pars reticulata, striatal
cholinergic interneurons, and dopaminergic neurons. The key
properties necessary for performing a rich set of computations are
therefore available in the basal ganglia.

The inhibitory Parisien transform results in a network in
which all neurons are inhibitory. This suggests that a recurrently-
connected inhibitory population (e.g. within the globus pallidus)
could potentially project a wide variety of functions recurrently,
and consequently exhibit a wide variety of dynamics.
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Notably, the Parisien transform is not affected by the synap-
tic action of the post-synaptic neurons, i.e. whether they are
excitatory, inhibitory, or modulatory. As a result, either the ex-
citatory or inhibitory transform is relevant to each of the excita-
tory and inhibitory projections within the basal ganglia, and in
fact throughout the cortico-basal loops. For example, the excita-
tory transform is consistentwith the cortico-striatal projection, de-
spite the fact that the target neurons (the medium spiny neurons)
are inhibitory. Similarly, the inhibitory transform is consistentwith
the pallido-thalamic projection – in which most pallidal neurons
terminate both directly onto thalamic projections neurons and in-
directly through local circuit interneurons (Ilinsky, Yi, & Kultas-
Ilinsky, 1997) – despite the fact that the projection neurons of the
thalamus are excitatory.

However, importantly, we have not modelled specific basal
ganglia circuits here in detail. For example, we have not explored
how rebound conductances in the subthalamic nucleus interact
with synaptic dynamics, we have not considered implications of
perisomatic varicosities in the projection from the external to
internal segment of the globus pallidus, etc.

7.3. Future work

An important future direction is optimization of the perfor-
mance of both the excitatory and inhibitory transforms. We have
taken some preliminary steps in this direction. For example, we
found that we could improve performance by using non-uniform
bias decoders that were optimized to produce a flatter bias func-
tion,with the constraint that the bias encoderswere not allowed to
grow. Another potential approach would be to use the backprop-
agation algorithm to optimize all three parts of the projection to-
gether. Finally, because regularization affects weight magnitudes
in the idealized projection, greater regularizationwould reduce the
role of the interneurons, perhaps reducing noise overall. It may be
possible to parameterize regularization of the idealized weights in
a way that further optimizes the full Parisien structure.

Another useful step forward would be to optimize feedback
networks to avoid the new instability that we have described. A
relevant degree of freedom is the choice of state–space realization,
given desired input–output dynamics. In preliminary work in this
direction (Tripp, 2008), we used a change of basis of the state
variables to stabilize a network without changing the nominal
input–output dynamics. However, the stable realization was
relatively noisy. It may be possible to define a ‘‘canonical neural
realization’’ that considers both stability and noise propagation,
analogous to the various canonical realizations of linear systems
theory. This would require a suitable model of noise propagation
through spiking networks, such as in our previous work (Tripp &
Eliasmith, 2010).

Itmay also bepossible to decode alternative nonlinear functions
from the interneurons of excitatory Parisien networks, which
improve the stability of these networks.

Importantly, because the networks in the present study are not
highly optimized, the results presented here can be seen as a lower
bound on achievable performance. With further optimization, the
ranges of stable dynamics and computable functions in Parisien
models may more closely approximate those of idealized models.

Finally, we have not yet shown that either of the Parisien
projections can be learned. Differences in cortical and basal ganglia
learning could well be a source of differences in their function
approximation and dynamic capacities.
7.4. Experimental validation

The transform suggested here would ideally be subject to
experimental validation. That is, if we observe anatomy of
essentially the right form, ideally we should be able to tell whether
a Parisien projection would result in the connectivity observed in
a given circuit. However, this type of validation presents a difficult
problem, because the transform is robust to a variety of changes
that result in different predictions about connectivity and firing
patterns.

In a specific Parisien-transformed model, the firing patterns
of the interneurons and post-synaptic neurons are different. This
suggests that one could develop a Parisien-transformed model
of a specific system, and then check experimentally whether a
minority of neurons exhibits firing patterns that resemble the
model interneurons’ firing patterns. The first problem is that it
is not clear how many interneurons to expect. Parisien et al.
(2008) assume a 1:4 ratio of interneurons to excitatory cells (to
match the proportion of inhibitory neurons in the cortex), but
the proportion is less critical for performance than the absolute
number. Furthermore, several projections might share the same
interneuron ensemble. With more projections sharing the same
interneurons, the performance would degrade gradually, because
finer differences in the value of the bias function would become
significant. Eventually the physical limit of convergence onto the
interneurons would be reached, but this limit could be surpassed
if the bias function were coded by only a subset of the correlated
pre-synaptic neurons. In summary, the proportion of interneurons
required for the Parisien transform is not well defined.

A second issue is that the distinct firing pattern of the
interneurons is not well defined. Parisien et al. (2008) assume
for convenience that the bias decoders are uniform, but, as they
discuss, this assumption is not critical. Different bias decoders
would result in a different bias function, and consequently a
different pattern of interneuron activity. Careful selection of bias
decoders might allow matching of a variety of experimental
observations. Failure to do so would cast doubt on the transform,
but success would provide only minor support.

Finally, specifically for the case of the inhibitory transform,
there is no reason that the interneurons and post-synaptic neurons
have to be distinct groups. Instead, all the network states including
x and xint could be encoded as a single vector by a single
group of neurons with multidimensional tuning. As a result, a
single recurrently-connected, multi-dimensional ensemble could
operate in the samemanner as two separate inhibitory groups. This
further confounds expectations about classes of firing patterns in
the network.

In sum, empirical support for the transform is likely very
difficult to come by. This, of course, is not an unfamiliar position
for theoretical analyses to be in. We believe that the generality of
the transform, its applicability to both excitatory and inhibitory
circuits, and the insights it offers regarding biologically constrained
implementations of dynamical systems make it a very useful tool
for comparing models to experimentally observable networks.
At the very least, it provides a systematic way to determine if
a hypothesized function for a neural system can be plausibly
ascribed to that system given known anatomical and physiological
constraints. In the specific case of the basal ganglia, the existence of
this transform significantly broadens the set of possible functions
compared to what is typically assumed.

8. Conclusion

We have shown a way in which networks of inhibitory neurons
can perform function approximation and exhibit flexible recurrent
dynamics. Their performance is comparable to idealized network
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models in which neurons have mixed excitatory and inhibitory
effects. The range of stable dynamics in these inhibitory models
is broad, in fact somewhat broader than in excitatory–inhibitory
networks modelled on the cortex. These results suggest that
the predominance of inhibition in the basal ganglia does not,
independent of other factors, prevent very flexible function
approximation and dynamics.
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Appendix. Feedback stability

This appendix analyses feedback dynamics of the excitatory and
inhibitory transforms by linearizing Eqs. (15)–(20) and considering
the eigenvalues of the resulting linear systems. An eigenvalue
with a positive real component reflects unstable linear dynamics,
i.e. unstable growth in the magnitude of the state vector.

We simplify the dynamic model by the approximation x̂ = x.
This approximation is reasonable because there are many primary
neurons, with effectively unconstrained synaptic weights, so the
linear decoding of x is relatively accurate. Furthermore, moderate
changes in D have little effect on x, because for any change in
D, neurons with opposite preferred directions change their firing
rates either up or down together. This approximation allows us to
focus on the stability of the new feedback loop.

A.1. Linearization of excitatory system

Assume the system in x is linear and stable.

τ Ḋ = f b(x,D) − (x̂int)(xint) − D
= h(x,D, xint),

τint ẋint = f b(x,D) − xint
= g(x,D, xint).

Linearizing around some operating points, x0, D0, xint0, gives

τ Ḋ = h(x0,D0, xint0) +
∂h

∂xint
(xint − xint0)

+
∂h
∂D

(D − D0) +
∂h
∂x

(x − x0)

= h(x0,D0, xint0) −
∂ x̂int
∂xint

(xint − xint0)

+


∂ f b

∂D
− 1


(D − D0) +

∂ f b

∂x
(x − x0)

τint ẋint = g(x0,D0, xint0) +
∂g

∂xint
(xint − xint0)

+
∂g
∂D

(D − D0) +
∂g
∂x

(x − x0)

= g(x0,D0, xint0) − (xint − xint0) +
∂ f b

∂D
(D − D0)

+
∂ f b

∂x
(x − x0).

Because we do not assume that we are at g(x0,D0, xint0) =

h(x0,D0, xint0) = 0, we can write these as equations as being
the difference between these dynamics, and those at the operating
point. This results in the equations describing the dynamics of
deviations around the operating point, that is,

τ(Ḋ − Ḋ0) = −
∂ x̂int
∂xint

(xint − xint0) +


∂ f b

∂D
− 1


(D − D0)

+
∂ f b

∂x
(x − x0)

τ δ̇D
= −

∂ x̂int
∂xint

δxint +


∂ f b

∂D
− 1


δD

+
∂ f b

∂x
δx

τint(ẋint − ẋint0) = −(xint − xint0) +
∂ f b

∂D
(D − D0) +

∂ f b

∂x
(x − x0)

τint δ̇
xint = −δxint +

∂ f b

∂D
δD

+
∂ f b

∂x
δx.

To simplify notation,we letα = ∂ f b/∂D and letβ = ∂ x̂int/∂xint .
Assuming the input from the nominally stable system is not part of
the analysis, we treat the autonomous system in δxint and δD where
the linearized dynamics matrix can be written:

AL
=


(α − 1) /τ −β/τ

α/τint −1/τint


.

The eigenvalues λ of the system are:

2λ =
(α − 1)

τ
−

1
τint

±


1 − α

τ
+

1
τint

2

−
4(α(β − 1) + 1)

ττint
.

An unstable eigenvalue (λ > 0) will exist if τ/τint < α − 1. As
anticipated, this corresponds to interneuron post-synaptic current
(PSC) dynamics τint that are too slow, relative to PSC dynamics τ in
the primary ensemble.

Another threat to stability arises if the second term under the
square root is negative, i.e. if β < 1 − 1/α. This suggests that a
sufficiently negative slope in the decoding error of the interneuron
ensemble (Fig. A.6B) would cause a self-perpetuating divergence
between the direct and indirect feedback. In such a scenario,
ultimately all the neurons in the network would saturate at their
maximum firing rates.

In both cases, the magnitude of α is a critical parameter.
It varies with x and D, but unfortunately its range is hard to
define. This is because it is a function of the bias encoders, which
depend on the synaptic weights, which in turn depend in complex
ways on the tuning curves of the primary ensemble. However,
α generally increases (endangering stability through both of the
above mechanisms) with increases in the absolute values of the
entries inA′. Thus, counter-intuitively, idealizednetworkdynamics
with large negative eigenvalues are at risk of becoming unstable in
excitatory Parisien form.

A.2. Linearization of inhibitory system

Assume the system in x is linear and stable.

τ Ḋ = −f b(x,D) − (xint + b)(xint) − D + b
= h(x,D, xint),

τint ẋint = −f b(x,D) − xint
= g(x,D, xint).

Linearizing around some operating points, x0, D0, xint0 gives

τ Ḋ = h(x0,D0, xint0) +
∂h

∂xint
(xint − xint0)

+
∂h
∂D

(D − D0) +
∂h
∂x

(x − x0)

= h(x0,D0, xint0) −
∂( xint + b)

∂xint
(xint − xint0)

−


∂ f b

∂D
+ 1


(D − D0) −

∂ f b

∂x
(x − x0)
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Fig. A.6. Sources of instability. A, Block diagram of amodel of feedback dynamics including factors introduced by the Parisien transform (the excitatory transform is shown).
In particular, neuron activity in the primary ensemble gives rise to the bias function f b(x,D), which feeds back both directly through the main projection, and also indirectly
through the interneurons. The indirect route introduces a lag, and an additional decoding error. Note that the two dynamic blocks 1/(τ s+1) (where s is the Laplace variable)
both correspond to synapses onto the primary neurons. These blocks are separated according to the logical distinction between the x and D state variables. Physically, the
direct feedback, which includes both x̂ and f b(x,D), corresponds to both of the feedback paths in the diagram that do not pass through xint . B, Decoding error x̂int − xint in an
example interneuron ensemble (150 neurons) from an excitatory transform. The constraint on the sign of the decodersmakes the decoding error relatively large, particularly
near zero.
Source: Reproduced with permission from Tripp (2008).
τint ẋint = g(x0,D0, xint0) +
∂g

∂xint
(xint − xint0)

+
∂g
∂D

(D − D0) +
∂g
∂x

(x − x0)

= g(x0,D0, xint0) − (xint − xint0) −
∂ f b

∂D
(D − D0)

−
∂ f b

∂x
(x − x0).

Because we do not assume that we are at g(x0,D0, xint0) =

h(x0,D0, xint0) = 0, we can write these as equations as being
the difference between these dynamics, and those expressed at
the shifted location. This results in the equations describing the
dynamics of the system around the new point, that is,

τ(Ḋ − Ḋ0) = −
∂( xint + b)

∂xint
(xint − xint0) −


∂ f b

∂D
+ 1


(D − D0)

−
∂ f b

∂x
(x − x0)

τ δ̇D
= −

∂( xint + b)
∂xint

δxint −


∂ f b

∂D
+ 1


δD

−
∂ f b

∂x
δx

τint(ẋint − ẋint0) = −(xint − xint0) −
∂ f b

∂D
(D − D0) −

∂ f b

∂x
(x − x0)

τint δ̇
xint = −δxint −

∂ f b

∂D
δD

−
∂ f b

∂x
δx.

To simplify notation, we let α = ∂ f b/∂D and let β =

∂ (xint + b)/∂xint . Assuming the input from the nominally stable
system is not part of the analysis, we treat the autonomous system
in δxint and δD where the linearized dynamics matrix can be
written:

AL
=


− (α + 1) /τ −β/τ

−α/τint −1/τint


.

The eigenvalues λ of the system are:

2λ =
−(α + 1)

τ
−

1
τint

±


α + 1

τ
+

1
τint

2

−
4(α(1 − β) + 1)

ττint
.

Note that α = ∂ f b/∂D > 0, because D corresponds to
over-excitation of the neurons. Therefore, the real part of the
eigenvalues is always negative, indicating stability, in agreement
with the spiking simulation results.
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